Search results for "Optical phase matching"
showing 3 items of 3 documents
Optical characterization of YCa4O(BO3)3 and Nd:YCa4O(BO3)3 crystals
2007
International audience; We report a complete optical characterization of YCa4O(BO3)3 and Nd:YCa4O(BO3)3 crystals. We studied the relative orientation between the dielectric and the crystallographic frames as a function of the wavelength and performed accurate phase-matching angles measurements for second harmonic generation, using a single crystal cut as a sphere. We also recorded polarized luminescence spectra of Nd:YCOB along the principal axes of the dielectric frame. For both crystals, we measured the gray-tracking and the thermo-optic properties as a function of temperature and wavelength using oriented slabs. Finally, we measured all their dielectric and electro-optic coefficients, as…
The role of nonlinear optical absorption in narrowband difference-frequency terahertz-wave generation
2010
We present a general analysis of the influence of nonlinear optical absorption on terahertz generation via optical difference frequency generation, when reaching for the quantum conversion efficiency limit. By casting the equations governing the process in a suitably normalized form, including either two-photon- or three-photon-absorption terms, we have been able to plot universal charts for phase matched optical-to-terahertz conversion for different values of the nonlinear absorption coefficients. We apply our analysis to some experiments reported to date, in order to understand to what extent multiphoton absorption could have played a role and also to predict the maximum achievable conver…
Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: A material comparison
2010
We present a detailed analysis and comparison of dielectric waveguides made of CdTe, GaP, GaAs and InP for modal phase matched optical difference frequency generation (DFG) in the terahertz domain. From the form of the DFG equations, we derived the definition of a very general figure of merit (FOM). In turn, this FOM enabled us to compare different configurations, by taking into account linear and nonlinear susceptibility dispersion, terahertz absorption, and a rigorous evaluation of the waveguide modes properties. The most efficient waveguides found with this procedure are predicted to approach the quantum efficiency limit with input optical power in the order of kWs.